Friday, December 28, 2007

Phylogenetics


Phylogenetic groups, or taxa, can be monophyletic, paraphyletic, or polyphyletic.
Phylogenetic groups, or taxa, can be monophyletic, paraphyletic, or polyphyletic.

In biology, phylogenetics (Greek: phyle = tribe, race and genetikos = relative to birth, from genesis = birth) is the study of evolutionary relatedness among various groups of organisms (e.g., species, populations). Also known as phylogenetic systematics or cladistics, phylogenetics treats a species as a group of lineage-connected individuals over time.[citation needed] Taxonomy, the classification of organisms according to similarity, has been richly informed by phylogenetics but remains methodologically and logically distinct.[1]

Evolution is regarded as a branching process, whereby populations are altered over time and may speciate into separate branches, hybridize together again, or terminate by extinction. This may be visualized as a multidimensional character-space that a population moves through over time. The problem posed by phylogenetics is that genetic data are only available for the present, and fossil records (osteometric data) are sporadic and less reliable. Our knowledge of how evolution operates is used to reconstruct the full tree.[2]

Cladistics provides a simplified method of understanding phylogenetic trees. There are some terms that describe the nature of a grouping. For instance, all birds and reptiles are believed to have descended from a single common ancestor, so this taxonomic grouping (yellow in the diagram) is called monophyletic. "Modern reptile" (cyan in the diagram) is a grouping that contains a common ancestor, but does not contain all descendents of that ancestor (birds are excluded). This is an example of a paraphyletic group. A grouping such as warm-blooded animals would include only mammals and birds (red/orange in the diagram) and is called polyphyletic because the members of this grouping do not include the most recent common ancestor. Although warm-blooded animals are all descended from a cold-blooded ancestor, warm-bloodedness evolved independently in both mammals and birds.

The most commonly used methods to infer phylogenies include parsimony, maximum likelihood, and MCMC-based Bayesian inference. Distance-based methods construct trees based on overall similarity which is often assumed to approximate phylogenetic relationships. All methods depend upon an implicit or explicit mathematical model describing the evolution of characters observed in the species included, and are usually used for molecular phylogeny where the characters are aligned nucleotide or amino acid sequences.


http://en.wikipedia.org/wiki/Phylogenetics

No comments: