Friday, December 21, 2007

Properties of Stem Cells

The classical definition of a stem cell requires that it possess two properties:

  • Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.
  • Potency - the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent - to be able to give rise to any mature cell type, although multipotent or unipotent progenitor cells are sometimes referred to as stem cells.

Potency definitions

Pluripotent, embryonic stem cells originate as inner mass cells within a blastocyst. The stem cells can become any tissue in the body, excluding a placenta. Only the morula's cells are totipotent, able to become all tissues and a placenta.
Pluripotent, embryonic stem cells originate as inner mass cells within a blastocyst. The stem cells can become any tissue in the body, excluding a placenta. Only the morula's cells are totipotent, able to become all tissues and a placenta.

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.

  • Totipotent stem cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent. These cells can differentiate into embryonic and extraembryonic cell types.
  • Pluripotent stem cells are the descendants of totipotent cells and can differentiate into cells derived from any of the three germ layers.
  • Multipotent stem cells can produce only cells of a closely related family of cells (e.g. hematopoietic stem cells differentiate into red blood cells, white blood cells, platelets, etc.).
  • Unipotent cells can produce only one cell type, but have the property of self-renewal which distinguishes them from non-stem cells (e.g. muscle stem cells).

Identifying Stem Cells

The practical definition of a stem cell is the functional definition - the ability to regenerate tissue over a lifetime. For example, the gold standard test for a bone marrow or hematopoietic stem cell (HSC) is the ability to transplant one cell and save an individual without HSCs. In this case, a stem cell must be able to produce new blood cells and immune cells over a long term, demonstrating potency. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, where single cells are characterized by their ability to differentiate and self-renew.[4][5] As well, stem cells can be isolated based on a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. Considerable debate exists whether some proposed adult cell populations are truly stem cells.


http://en.wikipedia.org/wiki/Stem_cell

No comments: