There have been several recent trends in biogenetic structuralism that are of interest to anthropology:
Transpersonal experience
One trend is toward a greater attention to transpersonal experience (see also transpersonal and transpersonal anthropology) as data relevant to the study of ritual; that is, to extraordinary experiences and states of consciousness, and the relation of these to patterns of symbolism, cognition and practice found in religions and cosmologies cross-culturally (see d'Aquili 1982, Laughlin 1985, 1988a, 1988c, Laughlin et al. 1986, Laughlin McManus and Shearer 1983, Laughlin, McManus and Webber 1984, MacDonald et al. 1988, Webber et al. 1983). Taking their inspiration from William James, the group has tracked the greatest range of human experience and related this to transformations in neurocognitive, autonomic and neuroendocrine entrainments. By expanding their scope to include all possible human experience, they hope to understand:
- The maximum potential genetic and developmental limits to patterns of entrainment and therefore to human experience,
- The mechanisms by which societies condition patterns of entrainment so as to control (limit or extend) the range of human experience,
- The mechanisms by which societies produce recurrent extraordinary experiences in some or all of their members so as to verify and vivify the societies' world views,
- And by extrapolation, the possible future limits of human consciousness (Laughlin and Richardson 1986).
Pre- and perinatal anthropology
Another trend in biogenetic structural theory has been to extend the age at which society influences neurocognitive development back into very early life. There is now sufficient evidence from clinical psychology and developmental neurobiology that experiences occurring in pre- and perinatal life (in the womb, during birth and during early infancy) are formative on later patterns of neurocognitive entrainment and adaptation. The methodological import of this view is that anthropologists and others interested in the ontogenesis of cognitive systems and cultural patterns need to look more carefully at how society conditions the environment of the human being during that early formative period (see Laughlin 1989a, 1990).
Neurophenomenology
Another recent interest has been in making a case for the importance of a neurophenomenology to the study of brain, consciousness and culture -- an approach that is often considered to be antithetical to the anti-introspectionist bias of positivist science, and particularly to some schools of cognitive science (Laughlin, McManus and d'Aquili 1990). Phenomenology (a la Edmund Husserl, Maurice Merleau-Ponty, Aron Gurwitsch, and others, as well as eastern mystical and cross-cultural shamanistic traditions) is the study of the invariant processes of consciousness (i.e., essences) by the practice of mature contemplation. Neurophenomenology is thus the attempt to explain such processes by reference to what is known about the brain. Two recent studies by the group exemplify this merging of contemplative and neuroscientific perspectives. One study discusses the wired-in intentionality of consciousness (noted in fact by all phenomenologies) in terms of a systemic dialectic between prefrontal cortex and sensory cortex (Laughlin 1988b). Another study suggests the relationship between invariant temporal patterns of perceptual sequencing and the neuropsychological literature available on "perceptual framing" (Laughlin 1992).
Contributions to cyborg anthropology
Because biogenetic structural theory rejects any disembodied account of consciousness or culture, it was quite natural for the group to consider the implications of the direct interfacing of information processing technologies (e.g., computers) and the development and evolution of the brain -- an inevitable outcome considering the modern research intended to bring that eventuality about. These considerations led to studies in the area of what has been called cyborg anthropology and cyberculture. A cyborg, short for "cybernetic organism," is a being that is part cybernetic machine and part organism, a term coined by two NASA scientists, Manfred Clynes and Nathan Kline (1960, reprinted in Gray 1995). These men suggested some of the advantages for space exploration of altering the human body with machines.
The group's analysis of the cyborg is grounded in the findings of modern neuroscience. The perspective is grounded upon the presumption that human consciousness and culture are functions of the human nervous system. In other words, consciousness is as much the function of the brain as digestion is the function of the stomach and grasping the function of the hand. Their reasoning and research led ultimately to a four stage account of the evolution of the cyborg -- a natural, but special case of the evolution of technology as a whole. The group hypothesizes that the emergence of the cyborg is following these stages:
- Stage I: Replacement or augmentation of the human skeleton. Examples: wooden leg, hook for lost hand, armor, false teeth, etc. This has been going on for centuries.
- Stage II: Replacement or augmentation of muscle. Examples: mechanical hand for lost hand, other prosthetic devices, mechanical heart valve, replacement of lens in eye, etc. Began to emerge in the mid-20th century.
- Stage III: Replacement or augmentation of parts of the peripheral nervous system, autonomic nervous system and the neuroendocrine system. Examples: bionic arms and legs, pacemakers, automatic biochemical pumps, etc. Emerging in the later 20th century.
- Stage IV: Replacement or augmentation of parts of the central nervous system. Examples: video "eyes" for blind, Air Force cyborg fighter plane control, etc. Rudimentary steps in the later 20th century.
Of course, this model is an over-simplification of the unfolding of the cyborg process, but it has the advantage of letting one see the progressive complexity involved. Stage I cyborg is equivalent to the external extension of the hands with a hammer, knife or other primitive tool. It essentially replaces or augments the skeletal physiology of the limbs. Thus the wooden leg and hook as prosthetic devices represent the more primitive innovations leading to the process of cyborg transformation. Portions of the nervous system have been eliminated with the loss of the amputated appendage.
Stage II cyborg sees the technical replacement or augmentation of both skeletal and muscle systems in the body. This stage is equivalent to the external replacement of muscles with engines. The hand is replaced with a movable machine, perhaps manipulated by servomechanisms that are triggered by movements of particular muscle groups. The diseased heart valve is replaced by a mechanical valve. The lens of the eye is replaced by a synthetic lens, and so on. Such mechanisms depend upon intact neuro-muscular systems for their control.
At Stage III cyborg, technical penetration reaches the nervous system and replaces or augments neural structures in the peripheral, autonomic or endocrine systems involved in the regulation of internal states. This stage is equivalent to simple regulatory systems in the external world, such as the thermostat controlling the temperature of a heater. Clynes and Kline addressed their original cyborg paper to problems in space exploration that might be solved by Stage III cyborg measures. The "bionic" arms and legs of the Six Million Dollar Man are fictional examples of Stage III developments, as is the more realistic contemporary heart pacemaker.
Finally, Stage IV cyborg produces the replacement or augmentation of structures in the central nervous system. This stage is equivalent to the supplementation or replacement of human brain power with computers in industry. This stage may involve modification of structures mediating the cognitive aspects of emotion, as well as imagination, intuition, perception, rational thought, intentionality, language, etc. -- all of which require higher cortical processing. Examples of developments at this stage are technologies such as the miniature video camera "eyes" wired to an electrode array implanted in the visual cortex of certain blind people. And rumor has it that the United States Air Force underwrites research on technologies that would allow direct brain to aircraft interfacing for fighter pilots. Scientists at Tokyo University have fitted microprocessors to the nervous systems of cockroaches using electrodes, and are able to control the roaches’ behavior via computer link.
The point to emphasize in all of this is that the emergence of the cyborg is a process of progressive technological penetration into the body, eventually replacing or augmenting the structures that mediate the various physical and mental attributes that we normally consider natural to human beings, including emotion, sensory modes, imagination and rational thought, the organization of intentional acts, etc. Clearly then, progressive penetration into the cortex of the brain will inevitably result in the technical alteration of human consciousness (Laughlin 1997), its optimal functioning and development in childhood (Laughlin 2000).
Quantum brain
- See also: Quantum brain dynamics
Biogenetic structural theory was expanded in the 1990s in order to account for how the human brain and mind may interact directly with the quantum universe. This step was necessitated by anomalous evidence developed by scientists in quantum physics, parapsychology and the ethnology of altered states of consciousness -- evidence that strongly suggests that human consciousness is capable of producing causation at a distance and communication through telepathic means (see e.g., Radin 1997). One answer to these anomalous experiences is that the human brain may operate somewhat as a quantum computer and is able to translate patterned activity in the quantum universe into information, and conversely to transform information into patterned activity in the quantum universe (see Laughlin 1996, Throop and Laughlin 2001).
Cultural neurophenomenology
The group's most recent work has focused upon developing a cultural neurophenomenology (see Laughlin & Throop 2001, 2006, 2007, Throop & Laughlin 2002, 2003). Cultural neurophenomenology is the view that the most productive research strategy for discovering the invariant properties of consciousness is trained introspection. After all, they argue, our own experience and awareness are the only ones we have direct access to. Anti-introspectionist positions in science are claimed by its adherents to be primarily due to pre-scientific cultural hangovers from Church rulings against direct spiritual exploration -- stemming historically from the so-called gnostic heresy. They consider behaviorist reaction to Wilhelm Wundt's introspectionism in psychology to be merely a legitimation of these cultural attitudes.
Edmund Husserl taught a different approach to the study of consciousness. He argued that in order to differentiate in experience between what is given by the world and what is added by our own minds in the constitution of experience, we must cultivate a trained introspection. When we do so (in Husserl's terms, when we master the "phenomenological reduction") we discover there are invariant properties of mind that condition and order our experience. For instance, we generate a sense of time by retaining recently past experience ("retention") and anticipating the near future ("protention") and combining these with the actual, on-going "now point" arising and passing in our sensorium. Once we come to understand that this is how our mind works, the question then naturally arises, what is "real" time in the sense of time existing in extramental reality, independent of our experience and our knowledge? Also, how does the structure of our nervous system mediate this time sense, and how does culture impact upon our interpretations of temporality?
The group is now examining a variety of issues regarding experience. Thus far they have utilized this framework to explore the cross-cultural and neuropsychological factors in the experience of emotion, including the emotional aspects of higher states of consciousness, the role of myth and cosmology in "trueing-up" the relationship between experience and reality, the importance of altered states of consciousness in bolstering the veridicality of experience, the interpenetration of experience and extramental reality, and a modern re-interpretation of Emile Durkheim's "collective effervescence."
http://en.wikipedia.org/wiki/Biogenetic_Structuralism
No comments:
Post a Comment